Introduction:
'project Management' deals witt bott 'materials' as well as
'human factors' to increase the productivity.
Objectives of project:
\rightarrow It should be completed in minimum time with minimum capital investment.
\rightarrow It should be Use available manpower and other resoures optimally.
What is prosect:
\rightarrow project is temporary endeavour undertaken to create unique product on services
\rightarrow A unique set f coordinated activities with definite starting and finishing points undertaken by an individual or organization to meet specific performance objectives witt in defined schedule, cost and performance parameters.
\rightarrow A project is a non-repetitive activity
\rightarrow It is goal oriented - it is being persued with a particular end or goal in mind.
\Rightarrow It has a particular set of constraints-usvally centred around time and resource.
\rightarrow tue output of the project is measurable

characteristics of project:

\rightarrow Fixed set objectives once they are met, project is closed.
\rightarrow projut has a definite lope span.
\rightarrow tee project is a single entily, while is participants may be many.
\rightarrow Team wink is absolutely essential. people from all functional groups are needed.
\rightarrow projects have definite life cycles.
\rightarrow All projects are unique, as tue people and plans involved m similar projects aho ale different.
$\rightarrow \quad$ A project is subjected to a lot of c
$\rightarrow \quad$ Has a high level of sub contracting
\rightarrow A project is fraught with risk and uncertainly
\rightarrow The diagram given indicates the categories of projects.

\leftrightarrow Based on the speed of execution of a project, they can be classified as:

1. Normal projects: Adequate time is provided for implementation project will involve minimum capital cost and no sacrifice in terms of quality
2. Crash projects: Additional capital cast are incurred to gain tine. in this case the quality may be compromised
3. Disaster projects: Anything needed to gain tine is allowed in this type of projects. quality shat of failure level is also accepted. Round the clock wile is Usually done.
What is project management:
project management is the coordinating effort to fulfil the goals of the project. the prosectmanager, as the head of the project team, is responsible for wis eff ort and its ultimate result project manages use knowledge, skills, tools, and methodologies to do the following
\rightarrow Identity the goals, objectives, requirements, and limitations of the project.
\rightarrow coordinate the different needs and expectations of th various project stakeholders including team members, resource managers, senior management, customers, and sponsors
\rightarrow plan, execute and control the tastes, and deliverables of the project based on tu identified projut goals and objectives.
\rightarrow close the project when completed and capture the knowledge accrued.
\rightarrow projut management includes planning, organizing, direct monitoring and controlling tu activities and optimum allocation of resources.
Roles and Responsibilities of project Manager:
4. Co-ordinating and integrating activities across Multiple functional lines.
5. Defining and maintaining the integrity of the proper
6. Development of project execution plan
7. Organising for the execution plan.
8. Setting targets and developments of systems and procedures for accomplishment of project objectives and targets
b. Negotiations for commitments from suppliers, clients and project members.
9. Direction, co-ordination and control of project activities
10. Non-human resource management including financial matters.
11. Management of personel, that is nan management.
12. Satisfy government, customer, promoters and puplic.
II. Achievement of cash surplus-project objectives and higher produetivily.
13. Managing human inter-relationships in lu project organisation.
14. Maintaining the balance between technical and Managerial project functions.
integrating competing demands $t \frac{\text { implement all aspects of }}{\text { on }}$ the project succentully as follows.

* project scope. Articulating the specific who to be dore fort er project
\rightarrow project time: setting ter finish date of terojeets as well as any interim dead lines for phases milestones, and deliverables.
\rightarrow project cost calculating and tracking eu projut costs and budget
\rightarrow project human resoures: signing on the team members whowill cary out the tasks of the project
\rightarrow project procurement Acquiring "tee material and equipment resources and obtaining any other supplies or services, melded to fultill project tasks.
\rightarrow project communication conveying assignments updates, reports and other information witt team members and other stakeholders.
\rightarrow project quality identifying the acceptable level of quality for the project goals and objectives.
\rightarrow projut risk Analyzing potential project risiu and response planning.
project planning:
planning is thu most important phases of project
manage meat planning involves defining objectives of the project, listing of tasks or jobs $\overline{\text { hat }}$ must be performed, determining total requirements for material, equipment and manpower and preparing estimates of costs and duration for the various jobs or activities to complete the project. It is necessary because
\rightarrow it provides direction
\rightarrow It he ups to reveal future opportunities and threats
\rightarrow It provides performance standard.
the following steps may be used to develop a project plan:
\rightarrow Define tu scope of writ, method statement, and sequence of world and objectives of project
\rightarrow Generate the work break down struetme (WBS) to produce a complete list of activities.
\rightarrow Develop the organization breakdown structure (OBS) and ink it wite wile breakdown struetane to indentity responsibilities.
\rightarrow Determine the relationship between activities
\rightarrow Estimate activities tine duration, cost expenditure, and resource require mint.
\rightarrow Develop (tu project netwolle
\rightarrow Determining gran requirement formatrials, equipments and manpower and preparing estimates of costs and duration for various jobs.
project scheduling:
A project has certain objectives and project is said to be completed if they are fulfilled. A series of activities (are grouped into) in a project are to be completed in a project with in available resources. All thence activities are grouped in to pacleages. Activities and tables of different packages are inter related and they are assigned wi tu resources live time with in which They are to be completed in proper logical sequence in other words, scheduling is the mechanical prows of formalizing the planned functions assigning the starting and completion dates to each part of the work in such a manner that (te whole work (project) proceeds in a logical sequence and in an orderly manner. steps in project Scheduling:
\rightarrow identifying the tasles that needs to be carried out:
\rightarrow estimating how long they will tale
\rightarrow allocating resources (mainly personnel)
\rightarrow Scheduling when the tastes will occur
in some cases, identifying tu tasks and activities and allocation of resource us to them ie planning and scheduling takes place at the same time
project controlling.
\rightarrow planning and scheduling are done before the actual project starts while the controlling is done during the actual project operations.
\rightarrow controlling consists of reviewing \bar{u} difference between the schedule and actual performance once the projcet has started.
\rightarrow project control helps to determine deviations from \sqrt{u} basic plan, to determine the effect of these deviations on the plan and to re-plan and reschedule ta compensate the deviations.
\rightarrow Determination of deviatims from basic plan and their effects on the project.
\rightarrow Replanning and rescheduling of activities to compensate for the deviations which is called "updating".
\rightarrow If should be noted that planning and scheduling are accomplished before the actual project starts while controling is operative during execution of the
\Rightarrow the method of planning and controlling that was kigenally developed was culled project planning and scheduling (ops). pps war later on converted into critical pate method,
so the CPM mvolues the deterministic approach and is Used for the repetitive types of projects
Techniques Used for projut management:

1. Bar chart:

Firstly introduced by Henry Gent around 1900 AD.
Features of bar char are:
\rightarrow It is a pictorial chart
\rightarrow It has two coordinates axes, th noritantal coordinate represents the elapsed time and vertical coordinate represents the job or activity to be performed.
\rightarrow tue beginning and end f each bar represents starting and finishing time of a particular activity respectively.
\rightarrow the length of bar shows the time required for completion.
\rightarrow Jobs can be concurrent on can be started ane oftor other. so some bars can ron parallel or overlap each other or may run serially
Limitations of bar chart:

1. Lack of degree of details: only major activities are shown in bar chart and subactivities can not be separated out. Hence effective control over the activities in big projects can not be achieved.
2. A bar chart does not show progress of work and hence it con not be sled as a control device,
3. A bar chart P ce enable to depict interdependencies of Various activities clearly.
4. Bare chart are not veeful in the projects where there ale uncertainties in determination of estimation of time required for completion of valians activities such as in $R \& D$ projects.
5. Bar chart cannot distinguish between aitical and noncritical activities and heule resource smoothening and resoulve levelling can not be done.
6. Bar charts -liagrams are useful for only smaller and simpler conventional propjets, especially construction and Manefactoring projects, in which time estimates can be made wite fair degree of certain by.

like stone chart:
\rightarrow It is a modification over oliginal Gantt chart.
\rightarrow Milestones are ky events of main activities represented by bar
\rightarrow there tire they give idea about completion of sub-activities.

NOTE: Controlling Can be bettor achieved with the help of milestone charts, but still activily interrelationship and accountabilily of time uncertainly can not be depicted which can be over come in network technique

Network Methods:
\rightarrow It is an outcome of $\overline{t u}$ improvements in $\overline{\text { Lu milestone chalks. }}$
\rightarrow thy are called by various names such as PERT, CPM, UNETICS, LESS, TOPS and SCANS.
\rightarrow However all these have emerged from the two major network systems

1. PERT
2. CPM

Network Diagram and techniques:

Network:
\rightarrow It is thu flow of diagram consisting of activities and events connected logically and sequentially.
\rightarrow Net work diagram are of two lypes.
(i) Activily-on-Arrow Netwhle $(A-O-A)$
(ii) Activity - on - Node Netwile ($A-0-N$)
r. dvantages of network method over bar chalk and milestone char, \&o

1. Inter relatimships between activities and events of a projut A are clearly shown.
2. The project can be treated as an integrated whole with all its sub-activities clearly related with each other It helps in controlling the project.
3. Network method is useful for very complicated projects having large number of activities
4. It indicates the time required in between two activities in which rescheduling of a project is possible
5. Time uncertainly is accounted for and so it also useful for research and development projects. Elements of a Network:
6. Event;
\rightarrow An event is either start or completion of an activity.
\rightarrow Events ale significant points in a project which out as control points of the poject
\Rightarrow An event is an instant of time and it does not require time or resources.

Examples of an event:

1. Allpents asmbled 2 A budget prepared
2. construction completed.
\rightarrow Events are represented by nodes in a retworle. It may - have any of the following shapes.

square


```
Tail event (o) start event:
```

\rightarrow it makes tu beginning of an activity
\rightarrow If it is Au first event of project item
known as "mitial as start event".
it has only outgoing arrow

Eg: event 10 is a tail event. Arrows represent job or activity of the project.

Head event or the final event:

\rightarrow The event which males tu completion of an aetivily known as "head event".
\rightarrow if this event represents completion entire project inen it is called" Finish event".
\rightarrow it has only incoming arrows

Note:
\rightarrow when tail event represents beginning of m the than one activity, then tue event is said to occur when tue first activity starts from it.
\rightarrow similily, when a head ked event occurs at end of mole than one activity, tu event is said to have occurred only when all the activities leading to it are completed.

Dual role events:
\rightarrow All extents except the first and the last event of a project are dual role events.
\rightarrow They have both incoming and outgoing arrows

Eg: Events 2,3, and 4 are dual role events.
causal events:
\rightarrow Tue events that follow another event are called successor events to that event.
ty: Event 2 and 3 are successor events of event 1 .
predecusor events:
\rightarrow the event or events that occur before another event are called predecessor event to that event.

53: Above figs, events 2, 3 are predecessor to event 5 .

Activity 6
\rightarrow Activily is actual performance of a job. It requires time and resources for its completion. tramples of an activily:

1. Excavate trench 2. Mix concrete
2. prepare budget

Dummy;
\rightarrow A dummy is a type of operation which neither requires time nor any resource, but it donates dependency among the activities.
\rightarrow It is represented by dashed arrow

$\rightarrow \quad$ Fig. shows, a dummy activity.
\rightarrow Donny is used to sure following purposes:

- Grammatical purpose:
\rightarrow To prevent two arrows having coom beginning and common end.

(a) Ambiguous Representation

(b) Grammati ally clean Representation.

2. Logical purpose:
\rightarrow To show relationship with other activities
\rightarrow Here dummy is required to show that activity D can start after completion activities of A \& B bolt.

Rules of a Netwilk:

1. There can be only one initial and one final event.
2. An event cannot occur unless all preceding activities are completed.
3. An event can not occur twill
4) Number of arrows should be equal to number of activities
5. Time should always How from left to right
6. Lengle of arrow does not show any magnitude straight arrows should be taken as for as possible

+ Arrows should normally not crown each other If it is necessong to cross, wee should be bridged over the other

8. No activity canstart until it's tail event has occurred.

Errors in Network:

1. Looping error: Loops should not be formed.

wring
2. Dangling error: project is complete only when all its activities are complete but $\overline{t u}$ duration q activity ' R ' has no effect on th project time as shown in fig (A) whenever an activity is disconnected from the network it is called dangling error.

\rightarrow To avoid dangling error, the net tl must be examined io such a manner that all events except initial and final events must hove at least one activity entering and one activity leaving them.

Wagon wheel error:
\rightarrow As shown is figs, each of th activities P, Q and R cannot start until all the three activities A, B and c are completed.
\rightarrow But in reality, this may not be the situation.
\rightarrow there is no error visible in tue construction of diagram but logical error has crept into it
$+$

Mile stone chart:

1. Milestone chart is a modification over the original Cant chart (Bu rchart)
2. Milestones are key events of a main activily represented by a bar these ale specific points in tine which marble tu completion of certain portions of the main activity. these points are Those which can be easily identified ore the main bar.
3. We represents a particular activity as a bor in the chart. if the bar is long, it indicates that it is taking m ore time. But the fact is when a bar on a bar-charts very long, the detail l bale in it. if, however, the activity is broken or sub-divided into a number of sub-altivities, each one of which can be easily recognized during the progress of the project/ controlling can be easily done
The beginning and end of these sub-divided activities

- or tasks are termed as milestones (key events).
the below figure shows the difference btw bar chart and milestone chart

\rightarrow The milestones ar events in anactivicy are marked by circling the milestone no. The milestones indicates the completion of main events in a particular activity therefore controlling of project becomes possible with the milestones.
\rightarrow the limitations of bar charts is similar to milestone charts except controlling controlling is possible in milestone charts.
project Evaluation and Review Technique (PERT):
\rightarrow PERT stands tor "project/programme Evaluation and Review reunnique".
\rightarrow PERT involves uncertainty into the project completion time.
\rightarrow It is a numerical technique used in (tu projects is which tine cannot be estimated accurately such as research and development projects.
\rightarrow It is an event oriented networle. cost is assumed to be directly moportional to time

Three time estimates are made in PERT:

1. Optimistic time (to): This is tu minimum possible time in which an activily can be completed under the most ideal conditions.
2. pessimistic time (ty): this is (tu maximum tine required to complete an activity under the worst possible conditions.
3. Most likely time $\left(t_{m}\right)$: this is the time required to complete an activity under normal working conditions. its value lies between to and to. It is near to vie expected time.

Note: the most likely time ($t m$) is based on experience and Judgement being based m tu tine required if $t \bar{w}$ activily is repeated a number of times under
essentially ter save conditit'
\rightarrow This tine signifies the most frequently occuring time it reflects a situation" things are as usual noting exciting".
MeanTime, standard Deviation and variance of an Activity: Mean Time (3) expected Time (3) Average Time:
\rightarrow in PERT each aetivily is assumed to follow β-distribution curve of time
\rightarrow this is calculated from β-distribution curve of time at which probability of activity is just $5 \% \%$, Time taken by various activities follow β-distribution.
\rightarrow Hence value of expected tine is calculated by weighted average as,

$$
t e=\frac{t_{0}+4 t_{m}+t_{p}}{b}
$$

Standard deviatim of an astivily (v) :

\rightarrow This is tue measurement of uncertainly, which is approximate by (asp one sprit of time range ie

$$
\sigma=\frac{t_{p}-t_{0}}{6}
$$

\rightarrow It can be seen above that 'a'' is affected by relative distance from te most optimistic estimates to lu most pessimistic estimates.
\rightarrow there for, wide range in tine estimates represents greater encertaincy.

Note:
In a limiting case, certain of on actrvily duration occurs andy when tue tire time estimates coincide, so That the standard deviations and the variance both vanish. consequently tee activity deration becomes certain which is the case of CPM. Hence, a PERT is a general case whereas CPM is $\overline{\text { cu }}$ particular case of PERT.

Variance of an Activily (ar):
\rightarrow square of standard deviation is variance of an activity.
\rightarrow it is to be noted that higher the uncertainly about a process, greater is the standaled deviation and hence greater is the variance of a project.
central limit incorem:
\rightarrow The Theorem states that a project consists of a large number of activities, where each aetivily has its own mean time ($t e)$, standard deviation (σ), valiance $\left(\sigma^{2}\right)$ and also its own β-distribution curve
\rightarrow the distribution of time for th project as a whole will approximately be a normal distribution, ie mean time or expected time of a project is

$$
t e=t e_{1}+t e_{2}+t e_{3}+\cdots \text { along oriticalpacte and }
$$ the valiance is,

$$
\sigma^{2}=\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}+\ldots \text { along ritilal part. }
$$

\rightarrow Hence standard deviation of (Le project as a whole

$$
\sigma=\sqrt{\sigma^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}+\cdots} \quad \text { almg critical pall. }
$$

critical pact:
\rightarrow the time wise longest path is the critical pat.
\rightarrow in tires path, any type of delay in any event will cause delay in the project. Mise are shown by double lines or darkle lines in a network

$\rightarrow 1-2-3-4$ is the critical part of following networle

Tine computation of events:

1. Earliest expected occurrence Time (EOT):
\rightarrow the time at which an event is expected to occur earliest.
\rightarrow tu tine at which an event can be expected to our earliest.
\rightarrow An event occurs when all tee activities leading to it are completed.
\rightarrow It is generally denoted by T_{E} it is calculated by forward pally.
$T_{E}^{j}=T_{E}^{i}+t_{i j} \quad$ Chem thine is only onepulte
$T_{E}^{j}=\left(T_{E}^{i}+t_{i j}\right)_{\text {max }}$ (when there are nne then ore parts)

Here $T_{E} i=$ fol of event j

$$
r_{t}^{i}=\text { EDT of event: }
$$

$$
t_{i}^{j}=\text { Expected time of activity. }
$$

2. Latest Allowable occurrence Time (LoT):
\rightarrow the latest allowable tine at which an event must occur to keep the project on schedule.
\rightarrow H is generally denoted by T_{l}. this is calculated Trough backward pall.
$T_{L}^{i}=T_{L}^{j}-t_{i j}$ - when there is only one pall.
$T_{L}^{i}=\left(T_{L}^{j}-t_{i j}\right)_{\text {min }}$ - when there are More than onepalt.
where

$$
\begin{aligned}
& T_{L}^{j}=\text { LoT ofevemT } j \\
& \Gamma_{L}^{i}=\text { LoT of event } i \\
& t_{i j}^{i}=\text { expected tine of activicy } i-j
\end{aligned}
$$

NotE: the latest allowable occurrence time of the finish event is equal to the schedule completion time of the prosit.
shack:
\rightarrow slack is defined as the difference between latest allowable time $\left(T_{L}\right)$ and ear liest expected time $\left(T_{E}\right)$ of an event.
slack for any event $j=T_{L}^{j}-T_{E}^{j}$
slack for any event $i=T_{L}^{i}-T_{E}^{i}$
\rightarrow slack may be positive, zero or negative
\rightarrow when slack is greater than zero. it indicates project is ahead of schedule and availability of excess resources. such events are sub-ritical.
\rightarrow if slack is zero, it indicates wok \&s on schedule and events are critical. Resource are just adequate.
\rightarrow It slack is negative, it indicates work is behind schedule and may cause delay in project completion. events are super critical. extra resources ore required.
\rightarrow the path having minimum or zero value is the "Critical patti" which is also time wise longest porte.

Critical path method: (CPM)

\rightarrow This is based an deterministic approach in which only one tine estimate is made for activity completion.
\rightarrow Network diagram in CPM is activity oriented.
\rightarrow It is activity oriented network
\rightarrow each activity is represented by arrow and $\overline{l n}_{\text {a }}$ juctions between the activities represents events.
\rightarrow used for repetitive type of project - accurate tine and cost estimate for completion of each activity can be made with fair degree of accuracy-deterministic
\rightarrow Trade of between tine \&cost
\rightarrow used in construction projects like bridges, buildings, dams, canals, ute.

Event Times in CPM :

1. Earliest occurrence time (T_{e}):
\rightarrow Time at which an event may occur as early as possible
2. Latest allowable tine $\left(T_{L}\right)$:
\rightarrow Tine at which event may occur as late as possible without delaying the orval proiret completion time
\rightarrow Wise are similar to PERT and are calculated in the same fashim.

Activity Times in CPM:

1. Earliest start time (EST):
\rightarrow It is the earliest possible time at which an activity can be started.
\rightarrow for an activity i- j, earliest avens time of event: \therefore Ie T_{E}^{i} is EST of activib i- j
2. Earliest finish time (EFT):
\rightarrow It is Lu earliest possible time by which on activity can be completed

$$
\begin{aligned}
& \Rightarrow \text { For an aotivily } i-j \\
& E F T=E S T+t_{i j}=T_{e}^{i}+t_{i j} \\
& \text { til }=\text { Activity duration }
\end{aligned}
$$

3. Latest start time (LST):
\Rightarrow This is the latest possible time at which an activily can be started witterat delaying \sqrt{u} overall prosit.

$$
\begin{aligned}
& L S T=L F T-\text { Activily-dulation } \\
& L S T=T_{i}{ }^{j}-T_{i j} \\
& L F T=\text { Latest finish time of activity } i-j=T_{L}{ }^{j}
\end{aligned}
$$

4. Latest finish time (LFT):
\rightarrow Init is the latest time by which an operation or activity mast be completed wilt at delaying the project.
\rightarrow for an activity $i-j$, latest allowable time of head event j ie $T_{L_{j}}$ is LFT of activity $i-j$

Float:
\rightarrow It is associated with activity times
\rightarrow It is analogous to slack of events in PERT
\rightarrow It is to range witt in which start or finish tine of an activity may fluctuate witt at affecting the project completion time
\rightarrow Floats are of following types

1. Total Hoar:
\rightarrow the time span by which starting or finishing of an activity can be delayed without delaying tue completion of the project
\rightarrow It is the maximum available time in e on (i rn) of (he relivily completion time.
\rightarrow total float is given by f_{T}.

$$
F_{T}-\left(T_{L}^{j}-T_{E}^{i}\right)-t_{i j}
$$

\rightarrow total float is given by Fr.
(h) preceding actives

(i) Tail event

$$
\begin{align*}
& F_{T}=\left(T_{L}^{i}\right)-\left(T_{E}^{i}+t_{i j}\right) \\
& F_{T}=\left(T_{L}^{j}\right)-\left(T_{E}^{i}+t_{i j}\right) \\
& F_{T}=L F T-E F T \tag{r}\\
& F_{T}=\left(T_{L} j-t i j\right)-T_{E}^{i} \\
& F_{T}=L S T-E S T
\end{align*}
$$

\rightarrow Total float of an activity affects total float of succeeding as well as preceding activities.
2. Free float $\left(F_{F}\right)$:
\rightarrow the delay which lon be made without delaying succeeding activities. if affects mb preceding activities.
\rightarrow It is denoted by F_{F}. It is assumed that all activities start as early as possible
\rightarrow Freetloat is given by

$$
\begin{aligned}
& F_{F}=\left(r_{\epsilon}^{j}-r_{e}^{i}\right)-t_{i j} \\
& F_{F}=F_{i}-s_{j}
\end{aligned}
$$

where δ_{j} is head event slack
3. Independent that (F_{10}):
\rightarrow It is the minimum excess available time which exists wittent affecting any of succeeding or preceding activities. It is denoted inf $F_{1 D}$.
\rightarrow It is the excess of minimum available tine over the activity duration.

$$
\begin{aligned}
& F_{1 D}=\left(T_{E}^{\rho}-T_{E}^{i}\right)-t_{i j} \\
& F_{1 D}=F_{F}-S_{i}
\end{aligned}
$$

where S_{i} is tail event stack
4. Interfering float ($F_{\text {INT }}$): it ic smillar to head event stare

$$
F_{\text {INT }}=s_{j}=F_{T}=F_{F}
$$

critical parts:
\rightarrow In CPM analyses, the pate alongwhich total thoats are zero or minimum is called as critical pate. all activities on this paths are critical. there can be More than one critical pats.
subcritical part:
\rightarrow It is the pate joining all sub critical activities. for a sub critical activity total float is greater than zero ie

$$
F_{T}>0
$$

super critical pat:
\rightarrow it is the pate jointing all super critical
activities.
Fol a super critical activities total that is les than zero.

$$
F_{T}<0
$$

CPM systems:
\Rightarrow mainly two systems are vied in CPM analysis.

1. A-O-A system (Activity m arrow system)
\rightarrow An activity is graphically represented by an arrow.
\rightarrow ITu tail and and head end of arrow represent stat and finish of an octivily respectively
2. A-0-N cystun (Activibon nodesystum (s)preledenledia)
\rightarrow Activity is represented by a circle or a node. events have no places.
\rightarrow Arrows are used only to show itu dependency relationship between activity nodes.
\rightarrow When two or mole activities start pralluly when an activity called DEBUT $\left(D_{0}\right)$ is plovided at the beginning.
\rightarrow Lulu wise a finish activily (F_{0}) is provided at lu end when mole than one activities finish parley. Activities $D \xi f$ has zero duration.
3. A-o-N system eliminates the use of dummy activities
4. It is mile helpful for projuts having mole ovorbping activities
5. It is a self sufficient and self-explomtory. Au activily tines (EST) EFF, LSF,LFT) are represented on veidiaqrame. 4. Revision and neadifilation are easier
6. pre-operations and most-operations of activities under consideration are distinctly, visible.

Examples: $\quad A-0-A$

$$
A-D-N
$$

$H_{1}(G)$

111 (b)

$\rightarrow 10$ CMT, tine is related te cost and lu object is to develop a^{m} optimum tian-wst aclatims ship.

- CPM Makes vire of the cost estimates along wot le ike fine eotimolis and provides a schedule for completing the activities at minimum total cost.
\rightarrow the ultimate deject of the network techniques is not Only to bring improvement is planning, Scheduling, aud control of project but also to aves itu possibility of arriving at feasible and desirable timetcost gelatin ship.
\rightarrow it overall project duration cau be reduced by reducing ike duratim of on k lu critical activities in lur project network
\therefore vier duration of sue activities may be reduced in two ways.
(a) By deploying more resources fin the early completim of such activities.
(b) By relaxing th technic cal specificatims for such activities.

M Whole of CPM cost moolel, we will be assuming that project duratim is reduced by deploying mole resources on critical activities.
\rightarrow Lw optimum deratim will be me which giver itu most economic cost for completing the project.
\rightarrow nCPM, there are two time and cost etimalu J activity, normal estimate and rash estimate.
\rightarrow in normal estimate, utu emphasis is on cost with time being associated with minimum cost
\rightarrow tu crash estimate involves the absolute minimum time required for the job and the cost neceesony to achieve it Here emphasis is on time
project cost:
\rightarrow total project cost is the sun of two separate costs.
(a) th direct cost for accomplishing the work
(b) the mdireet cost related to the control or direction of That wall, financial overhead, Lost production, and veer hive etc.

outagelos overheods
\rightarrow From graph
(i) If a project goes m indefinitely, the cost will increase.
(ii) Lyly, cost will increase if ur project is extended.
(ii) cost is minimum at same optimum project duration

Indirect project cost:
\rightarrow mdireet coste m a project are moose expenditures which cannot be apportioned (o) clearly allow lated to the individual activities of a project, but are assessed as a whole
\rightarrow the indirect cost includes the expenditure related to adminstrative and establishment charges, overbead, superVision, expenditure on a central stole organization, los of revenue, lost profits, penally etc.
\rightarrow mdireet cost rises with increased duratim, considering only overhead and supervision. It is represented by a straight line, with a stope equalto daily overhead.
\rightarrow But when inure is a los in profits, due to inability to meet demands (ब) due to some penally , due te delay, acoresponding cost increase must be added to the cost of over heads, producing tue curve. such a lobs is called outage loss.
\rightarrow the total indirect cost wive will men be curved.

Disucel project cost:
\rightarrow It is the cost which is directly dependent of the amount of resource involved for completion of activities.
\rightarrow It includes labour, material, plants and machining ate
\rightarrow To get the same work done in tees time, we have to increase amount of labour y equipment and time saving material that to at extra charges which simply means increase in direct cost
\rightarrow the project has the nighest cost corresponding to the crash duration, and has normal cost corresponding to the normal duration.

Normal time $(-t n)$:
Normal time is tue standard time that an estimation would usually allow for an altivily.

Crash time (te):
Crash time is the minimum possible time in which
an activity can be completed, by employing extra resourus. crash time is that time, beyond which the activity cannot be shorthanded by any amount of increase in the resources

Normal cost $\left(C_{n}\right)_{?}$
this is direct cost required to complete the activily in normal time duratim.
crash cost (c):
this is che direct cost corresponding to the completion) of the aetivily with in rash time.

a Generalized direct cost-time

- Dirut cost curve curve approximation.
cost

te
segmented
approximation
\rightarrow St-line (ar) segmented approximation of the doseet cost curve is helptal in calling ant the cottproject analysis? m such analysis, the cost slope is used.
cost slope:
\rightarrow Th cost slope is t she slope of th discet cost curve, approximated as st. Line.

It is defined as

$$
\begin{aligned}
\text { cost- slope } & =\frac{\text { crash cost -Normal cost }}{\text { Normal time }- \text { crash time }} \\
c_{c} & =\frac{c_{e}-c_{n}}{t n-t c}
\end{aligned}
$$

$$
c_{s}=\frac{\Delta_{c}}{\Delta t}
$$

\rightarrow the segmented approximation of cost curve, having multiple cost slope. $A^{\circ} \mathrm{S}$ m m peculate but calculations involved are mole generally sigle cot slope is assumed.

Resource allocation:
\rightarrow AU the necessary resours are not available in unlimited quantities
\rightarrow Avalability of some of the resources may be restricted
\Rightarrow Avalability of manpower wed material etc mug be restricted.
\rightarrow Avalabilily of funds, credit's, capital investment and heavy equipment mong be restricted.
\rightarrow supervissly, teehnolal and skilled manpower space and equipment are usually the most important resources That need to be all ocated carefully
\rightarrow the various activities of the project de to be scheduled in such away that the demand of various resources is mile oles uniform all along the project duation.
\rightarrow ma networle, various activities are in solved, and each activily requires some resources to perform it.
\rightarrow There may be activities which are to be performed simultaneously, and may require common resources.
\rightarrow the requirement of resources to execute then simultaneous activities many exceed the avails resumes.
\rightarrow However at some other period of tue execution of the sauce project, there may pe very few activities which may require this resources.
\rightarrow Hence the requirement of priticular type of resources may not be miform during the project duration
\rightarrow Wit can be but known by plotting the resource usage profiles (n) histo grams.
\rightarrow the diagram which shows variation in thu requinements of resomes with time is called resource usage profice(o) histogram.
\rightarrow Resoule allocation coube achieved by following two process.

\rightarrow Duratition

Resoure smoothening
\rightarrow Here resources are considered inlinited.
\rightarrow project duration is maintained and critical activities remain unchanged.
\rightarrow start time of some of non critical activities ane shifted with in their available troats to create uniform demand through out
Resoure levelling/:
\rightarrow Here resoules are considered limited project duration mousy be changed.
\rightarrow Activities are rescheduled to cut down th peak requirement of resoles so that it does not cress itu e limit of resounds.

Yitarmbe resources should never be les than itu maximum quantity required fir un g activity of proscet.
\rightarrow Firstly, available floats are cased then if needed duration of some aetivitu is mereased (o) decreased as per the resole requirement

CPM updating:
\rightarrow Lu prows of reviewing the progress of project execution and redrafting the netwolic according to latest requirement is called 'updating'.
\rightarrow During redrafting, scheduled alates are revised-new critical pate may emerge and hence project priorities may Change.
\rightarrow crashing of new critical activities may be required to make project n schedule
\rightarrow updating is recessing to compensate for deviatips in actual execution of works and original plans.
\rightarrow During the proun of updating neither activities are deleted ail new cutivities added.

When to updates.
1- updating should be mote frequent for shorter duration proscets
2. For larger duration projcets, frequency should be increased as project is nearing completion.
3. Whenever mayo change in it a duration of any of activity occurs updating should be done

Trucks and trawling equipment:
\rightarrow in transporting excavated material, processed aggregates and construction materials and for moving other pieces of construction equipment.
\rightarrow trucks serve one purpose, they are hauling units that, because of their high travel speeds, provide relatively low hauling costs.
\rightarrow the use of trucks as the primary hauling unit provides a nigh degree of tvexibilily.
\rightarrow Most truck can be operated over any haul road for which the surface is sufficiently firm and smooth on which the grades are not excessively steep.

* some units are designated as off-highway truck because their te and weight are greater than that permitted on public high ways
\rightarrow Off-nighway trucks are used for hauling material in quarries and on large projects involving the movemer of substantial amounts of earth and rock
\rightarrow On such projects, the size and costs of these large trucks are easily justified because of tum increased production capability they provide
\rightarrow Trucks can be classified by many factors including

1. The method of dumping the load -rear dump, bottom dump, side dump.
2. Le type of frame -rigid frame (θ) articulated
3. the size and type of engine-gasoline, diesel, butane(n) propane
4. The kind of drive-two-wheel, four-wheel, (x) six wheel
5. The number of wheels and axles, and itu arrangement of driving wheels
6. The clan of material hauled -earle, rock, coal (a) ore
\rightarrow the capacicy-gravimetric (tons) (b) volumetric (cubs cyards)
\rightarrow if trucks are to be purchased for general material hauling, the purchaser should select units adaptable to the muetipurposes to which they will be employed.
\Rightarrow on the other hand, if truckles are to be used on a given project fir a single purpose, they should be seleated specifically to fit the requirements of the project.

Rigid Dumptrueks:
\rightarrow in the Rigid dump trucks (RDI), there is one immensely strong main frame on which ale mounted bole axles, the body and the cab.
\rightarrow the main frame assures long life of equipment
-Articulated Dumptiveles:
\rightarrow In tue articulated Dump trucks (ADI), rear frame and front frame are connected by articulated coupling
\rightarrow ADTs have te following distinct advantages over RDI's for the construction and earth moving indestrie.
(a) Low turning radius
(b) Higher tractive effect
(c) Better operator comfort
(D) faster cycle time

Rear Dump truckles:
\rightarrow Rear dump trucks are heavy duly trucks with a strongh built body which is hinged at Itu back and is fitted with a hydraulic pump on the underside to lift the front of the body and tilt it backwards into a dumping positim.
\rightarrow They Can haul free-flowing material such as earth, sand, gravel, blasted rocks, ole, shale, coal tc. Rear Dumptrueks are used when:
(a) the material to be hauled is large rock and the maximum flexibility is required for hauling a validly of materials under variable job conditions
(b) Maximum gradabilily and rapid spotting in restricted area is required.
(c) the hauling unit is subjected to severe loading impact when under a large shovel or dragline.
(D) Dumping is restricted in hoppers or fill.
\rightarrow In cold climate countries, the body is designed to prevent material from fretting.
\rightarrow Exhaust gases tron the engine are Carried through duets which heat the body of the truck and it helps considerably when hauling wet, adhesive and sticky materials.
Bottom Dump trucks;
\rightarrow in Bottom Dump Trucks, tu body always remains in position and the discharge of material takes place through the bottom by the opening of two longitudinal gales.

Bottom Dump truckles are used when:
(a) the material to be hauled is easy flowing like sand, gravel/ dey earth etc
(b) th wad is to be spread in layers as on till of a dan.
(c) the material is discharged while the unit is moving and the rapid, and controlled rate of discharge gives these units a time advantage over rear dump trucks.
(d) Because of limited openings these donot find application when the material is of big size or it is wet and sticky
(e) Long adverse grades should not exceed 5% tr (he best performance
\Rightarrow Side dump trucks have tu body hinged on bott sides such that they can dump the material in a long narrow lengte or on one or bott sides of a road.
\rightarrow the dumptructes are built with a strong chassis to withstand rough goad conditions at construction riles the dumper can handle bott free flowing material ad the roche

Capacities of trucks and hauling equipment.

\rightarrow There are at least inge methods of rating te capacities of trucks and wagons:

1. Gravimetric - the load it will carry, expressed as
a weight
2. Struck volume - the volumetric amount it will carr, if the load is water level in the body
3. Heaped volume - the volumetric amount it will cary, if the load is heaped on a $2: 1$ slope above the body
\rightarrow the gravimetric rating is Usually expressed in pounds r kilograms and the latter two rating in civic yards (a) cubic meters.
\Rightarrow the struck capalily of a truck is the volume of material that it will haul when it is filled level to the top of the body sides.
\rightarrow the heaped capacity is lee volume of material in at it will haul when the load is heaped above th sides.
\rightarrow le standard for rated heaped capacily uses an assumed $2: 1$ stope.
\rightarrow the actual heaped capacily will vary wile the material that is being hauled.
\rightarrow Wet earth (8) sandy clay can be hauled will a slope of about 1:1, while dry sand on gravel may not permit a slope greater than about 3:1
\rightarrow To determine the heaped capacily of a unit, it is necessary to lenow the struck capacily, lit bingle and width of the body, and the stope at which the material will remain stable while when unit is moving.
\rightarrow SmoDt在 haul roads will permit a larger heaped capacily then the rough haul rods.
\rightarrow the truck's weight caparily mayplimit the volupitrie Load a chit can carry
\rightarrow this happens when hauling a material having high unit weight such as ir (n) even wetsand.
\rightarrow However, when the unit weight of the materials is such that the safe load is not exceeded, a init can be filled to its heaped capalily.
\rightarrow Always cheeks to ensure that the volumetric loud doesnot cause a condition where the load weight exceeds the gravimetric capacily of lu truck
es 'ruck size Affects productivily:
The productivily of a truck depends on lie size of its load and $\sqrt{\text { an }}$ number of trips it can male in a unit of time
\rightarrow The no .t trips completed per hour is a function of cycle time.
\rightarrow Truck cycle time has four components.
(1) Load time
(2) haul time
(3) dump time
(4) return time
\rightarrow Examining a match between truck body size and excavator bucket size yields the size of the load and load time
\rightarrow the haul and rectum cycle tines will depend of the weight of the truck, the horsepower of the engine, lu e haul and retum distances and return distances and the condition of the roads traversed.
\rightarrow Dump time is a function of lie lupe of eqlupment and conditions in lu e dump area
\rightarrow when an excavator is used to load material into trucks, the size of the truele cargo body introduces serval factors, which affect is e production rate and the cost of handling the material.

Small trucks - Advantages.

1. More teribilily, which may be an advantage on restricted work sites
2. Higher speed, can achieve higher haul and return speeds.
3. peoductim, little impact if me truck breaks down
4. Balance of thee, easy to match no. of trucks to excavator production.

Small trues - Disadvantages:

1. Number, mole trucks increases operational dangers in the pit, along the haul road and the dump.
2. More drivers required mile needed to a given output
3. Loading impediment, small target th excavation bucket
4. poistioningtime, total spotting time greater because of the number required.

Large truck - Advantages:

1. Number, fewer needed fora given output
2. Drivers required, fewer needed tor a given output
3. Loading advantage, Larger target tor the excavator bucket.
4. poistioning time, frequency of spotting trucks is reduced.

3

1. cost of truck time at loading greater, especially will small excavations.
2. Loads heavier, possible damage to the haul roads this increasing the cost tor maintenance of the haul road.
3. Balance of the, difficult to match number of trucks to excavator production.
4. Size, may not be permitted to haul on highways. CALCULATING TRUCK PRODUCTION:
\rightarrow tue most important consideration when matching excavators and trucks is finding equipment having compatible Capacities.
\rightarrow Matched capacities yield maximum loading efficiency.
\rightarrow the following is a format that can be used to calculate truck production
(i) Number of Bucket loads:
\rightarrow the first important step in analyzing truck production is to determine tue number of excavator bucket loads it takes to load the truck.

$$
\text { Balance number of bucket wads }=\frac{\text { Truck capacic } c_{y}(1 c y)}{\text { Bucket Capacily }(l c y)}
$$

(2) Load Time and Truck load volume:
\rightarrow the actual number of bucket loads placed m the truck must be an integer number
\rightarrow It is possible to not completely fill the bucket (light load) to match the bucket volume to the truck volume, but that practice is orvally on efficient as it result in wasted loading time
\rightarrow If one les bucket load is placed on the truele, the loading tine will be reduced. but the load on the truckle is also reduced
\rightarrow Sometimes job conditions will dictate that a lesser number of bucket loads be placed on the truck ie, the load size is adjusted if haul roads are in poor condition on if the trueles must traverse steep grades.
\rightarrow the truck load volume in such cases will equal to bucket volume multiplied by the no. of becket loads.

Next Lower integer: For the case while the number of bullet loads is rounded down to an integer lower man the balance number of wads are reduced because of job conditims.

Load time $=$ Number of bucket loads \times Bucket cycle time Truck load (volumetric)
$L I$

Higher integer: if the division of truck Gogh body volume by the bucket volume is rounded to te v next integer and that higher number of bucket loads is plated on the truck, exiles material will spill off the truck
\rightarrow In such lase, tu loading duration equals tu bucket cycle time multiplied by tu number of bucket swings.
\rightarrow But the volume of the load on the truck equals $\sqrt[t u]{ }$ truck lapalily, not the number of bucket swings multiplied by the bucket volume

Load time $=$ Number of bucket loads \times Bucket cycle time

$$
\text { Truck load (volumetric) }=\text { Truck volumetric capacity. }
$$

Gravimetric check:
\rightarrow Always check the load weight aganist the gravimetric capacity of th truck.

$$
\begin{aligned}
& \text { Truckload }=\text { volumetriclood(ly) } \times \text { unit weight } \\
& \text { (gravimetric) } \\
& \text { (loose vol, ib/luy) }
\end{aligned}
$$

Truckle load $<$ Rated gravimetric payload.
gravimetric)
(3) Haul time
\rightarrow Hauling should be at the highest safe speed and in tu proper gear
\rightarrow To increase efficiency, use one-way traffic patterns.
firm = teat per.
mph a meter per has

$$
\begin{aligned}
& \text { Mph = melon per hal distance (Ht) }=\frac{\text { Havel dist }}{88 \mathrm{tpm} / \mathrm{mph} \times \text { Haul speed (mph) }} \text { Hen }
\end{aligned}
$$

\rightarrow Based on the gross weight of the truale with load, and considering $t \sqrt{4}$ rolling and grade resistance from the loading alva to dump port, haul travel speeds can be estimated using the truck manufacturer's pertinence chart.
\rightarrow the truck's performance chart should be used to determine the maximum speed for each section of haul rood having a significant difference in grade of rolling resistance
(4) Retumtine:
\rightarrow Based on the empty vehicle weight and the rolling and grade resistance from tu dump point 5_{0} wee Loading area, retum travel speeds can be estimated using $\sqrt{4}$ truck manufacturers performance chart.

$$
\text { Rectum time }(\text { nim })=\frac{\text { Returndistance }(\mathrm{tt})}{88 \mathrm{tpm} / \mathrm{mph} \times \text { Haul speed (mph) }}
$$

(5) Dump time:
\rightarrow Dump time will depend on ta type of hauling unit and congestion in tu dump area.
\rightarrow Consider that the dumping area is Usually crowded wite support equipment.

- Dozers are spreading tu dumped material, and muttifu pieces of compaction equipment may be working in the area.
\rightarrow Rear dumps must be spotted before dumping
\rightarrow This usually means that tu truckle must cone to a complete slop and then backup some distance
\rightarrow total dumping time in such cases can excel 2 min.
\rightarrow Bottom dumps will customarily dump while moving.
\rightarrow After dumping, the truck normally turns and returns to the loading area.
\rightarrow Under favorable condition, a rear dump can dump and tum in 0.7 min but an average unfavorable time is about 1.5 min .
\rightarrow Botton-dumps can dump in 0.3 min under favorable conditions, but they too mary average 1.5 min when conditions are unfavorable.
\rightarrow Always try to visvaliate the conditions in the dump area when estimating dump time
(b) Truck cycle time:
\rightarrow the cycle time of a truck is the sum of the load tine, the haul time, tu dump time, and rectum time

$$
\begin{aligned}
& \text { Truck cycletime }= \text { Load }+ \text { Haul }+ \text { Dump }+ \text { Retum } \\
& \text { time time } \\
& \text { time }
\end{aligned}
$$

7 Number of truckles required:
\rightarrow the no .t trucks required to kep the loading equipment working at capacity is

$$
\text { Balanced not trucks }=\frac{\text { Trued cycle time }(\mathrm{min})}{\text { Excavator cycle time }(\mathrm{min})}
$$

production:
\rightarrow The number of trucks most be an integer number integer lower than Balance number:
\rightarrow If an integer number of truckles lower than the result in above equation is chooses, then the truckles will control production.

Integer Greater 1 han Balance number:
\rightarrow When an integer number of trucks greater than the result in above equation is selected production is controlled by the loading equipment

$$
\underset{(l y / \mathrm{hr})}{\text { production }}=\underset{\operatorname{load}(\mathrm{ly})}{\text { Truck }} \times \frac{60 \mathrm{~min}}{\text { ExCavator cycle time (min) }}
$$

\rightarrow As a que, it is better to never kep the loading equipment waiting.
\rightarrow If there is not a sufficient number of haul trucks, There will be a lees in production.
\rightarrow Truck bunching (B) queuing will reduce production 10 t 20% even when there is a perfect match between excavator capalily and the not trucks.
\rightarrow If there are extra haul units, this queuing offeet is reduled.
\Rightarrow Therefor, it is usually best to have mole trucks that is wilt above equation round up to the rent integer
(8) Efficiency:
\rightarrow the production calculated with either equation A) \& equation (B) is based on a bo-min waking hour.
\rightarrow That production should be adjusted by an efficiency factor
\rightarrow Longer hauling distances osvally result in better driver efficiency.
\rightarrow Driver efficiency increases as haul distance increases out to about 8000 fe , after which efficiency remain constant.
\rightarrow other critical elements offuting efficiency are bunching, equipment condition.

Adjusted production $=$ production $\times \frac{\text { Whkingtime }}{60 \mathrm{~min}}(\mathrm{~min} / \mathrm{hs})$.

Types of compaction equipment:
\rightarrow Applying energy to a soil by one or More of the following methods will cause compaction.

1. Impact - sharp blow
2. presume - static weight
3. Vibration - shaking
4. kneading - Manipulation (os) rearranging.

Introduction:- In order to have proper quality construction project 1 the use of mechanical equipments has become an important and essential future use of construction equipment became unavoidable for execution of large and complex and projects with stringent sheduly and critical performance standards. It has been estimated that about $20-30 \times$ of the total project cost has been accounted towords equipment and machinary.
(COmmon construction equipments:-

* Equipment for excavation
* Equipment for hauling.
* Equipment for compaction of earth

F Drilling and Blasting Equipment.

* Rock crushing equipment.
* concrete producing equipment
* Pile Driving equipment
* Hoisting equipment e.t.c.

Equipment for Excavation:-

1. Hoists
2. Cranes
3. Tractors
4. Bulldozers
5. Graders
6. Drag lines
7. Calmshell buckets.
8. HOISTING EQUIPMENT

Hoisting is the operation of lifting the load Hence equipments used for Hoisting purpose lift the load from the place, hold it in suspension during trans - fer from one location to the another and finally plate it on the desired location.

It should be strong enough to negotiate The load presser and should consume minimum time possible in the operation and it must be quite safe while handling.

Types of Hoisting equipment :-
mainly we have 4 types of hoisting equipments Those are 1 pulley
2. Chain hoists
3. Tacks
4. Winch.

Pulley:-
Pulley and sheave are used for lifting rough Surface end heavy objects. Both Chains and wire ropes are used for this purpose.

Chain Hoists: - It is used for lifting loads upto 50 tonnes. The system consists of hand Chain and the

Chain is transmitted to the load chain with a mulbiplice -Lion factor over 20 .

Jacks:- It is based on the principle of inclined planes. It is the shortname of screw Jack. The Smallest Jack may have a capacity of 5 tonnes and is generally used for lifting an automobile wheel, while the bigger variety may be of 100 tonnes capacity.

They are primarily of two types.

1. Mechanical
2. Hydroulic.

In the mechanical system, load is mounted on Plat form which is attached with Spirally Threaded spindle. The plat form is rotated and load is lifted.

The hydroulic type, pressure is exerted by a liquied on the Surface.

Winch:-
A winch is a combination of gears (Spur and Pinion) clutches and brake. The operation is controlled through a series of Levers.

It is commenly used in lifting the Railway Gates.
(2) Tractors

These are multi-purpose machines used main for polling and pushing the other equipments or heave, loads. Hey are also used for agricultural purposes Tractors may be classified as:

Tractors

Crawler type
Tractors
Wheel type tractors

Two-wheel
Four-wheel type.
(i) crawler type tractors:-

It is a versatile equipment used to move bull dozers, scrapers and wagons on rough roads. The craw -her. has a chain by which these tractors can be very effective even in the case of loose or moddy soils. maximum speed is generally 11.2 kmph average is about 4.8 to 5.6 kmph . Therefore best suited for short hauls say 60 to 150 m , through are lied for long distance too. special advantage of crawler type tractors is their ability to travel over very rough surfaces and to climb step grades up to 25 to 29% at speed of 3 kmph .
(ii) Wheel type Tractors:- The travel with high speeds Than crawel type tractor. These type of tractors are generally employed for light but speedy Jobs. maximum speed is generally more han 50 kmph .
(a) Two-wheel type tractors
(b) Four- Wheel type tractors.

Advantage of Two-wheel tractors:-
*. Fewer tyres to provide and maintain

* Increased maneuverability
* Decreased rolling resistance, because of the elimi
- nation of extra axle.

Advantages of Four-wheel type Tractors:

* Greater confidence of operator, due to better steer -ing properties.
*. Less tendency to bump over rough haul roads.
* Greater speed due to better steering pooperties and less tendency to bump over rough haul roads.
Gradability of Tractors: It is the mimum scope, express -ed as percentage, up to which a crawler or wheel type Tractorsmay move at a uniform speed

$$
K=\frac{972 \times T \times G}{R \times W}-\frac{N}{20}
$$

where $k=$ gradabilits, $\%$
$T=$ Rated engine torque tbs. ft
$G=$ Total gear reduction for a particular gear selected
$R=$ Rolling radius
W = Cross weight of complete units in lbs
$N=$ Rolling resistance in 1 bs per ton.
(3) BULLDOZER

Bull dozer are very popular earth moving equip. - ent which can be lased for the following Jobs:

1. Site clearance
2. Cutting in mountaneous and rocky terrain
3. Moving earth for haulages upto 100 meters.
4. Loading tractor pulled scapers
5. spreading earth fill
6. Back filling trenches
7. Earth road maintenance.

They are two types of bulldozers.
Bulldozers

Bulldozers
Angle dozer.
In some, blades may be adjusted to permit use Bulldozer or angle dozer. These machines may be divide: on the basis of their mounting as.

crawler-tractors mounted
(chain crawlers)

Wheel -tractor mounted (Pneumatic wheel)

Based on method of raising and lowering the blades bulldozers may be clanified as
(a) cable controlled
(b) Hydraulic controlled

The cables controlled operation has the following advantages

1. Simple to operate
2. Easier repair
3. Less danger of damage to the machine

The hydroulic controlled operation has the following advantages.

1. Ability to provide high down pressure on the blades.
2. Mare precise setting can be maintained

Comparative advantages between crawler tractor \& Wheel tractor mounted.
(4) Scraper

The scraper are the devices that can load itself, cam carry the material and discharage at the other en scrapers are another ex of combination of an exco. - tor and a mover. Hey are not suited for

1. Wet or muddy material
2. Hard rocks.

The self loading scrapers are available upto yo ci suitable hauling distance is 150 to 300 m in some case up to 1500 m . Depending upon type of the tractor used Scraper can be clanified as.

Crawler-Tractor scraper:- The equipment consits of crawl: Tractor pulling a pneumatic self loading scaper even or rough and poor roads because of the high drawbar Pull of the tractor and superior fraction it gives the good perfomence.

Wheel Tractor scraper: When the haul distance is long this type of tractor a is better suited for the Job. it is mare economical than crawler type.
Motor scraper: motor scraper are Those having Their own engine and motoring arrangment.
operation of scrapers:
front end of the bowl bill the cutting edge, enters the ground and at the same time, raising the front apron to provide an open slot, through which the earth flows in to the bowl. As the scraper is pulled fonoord, a strip of earth is forced into the bowl. The cutting edge is raised and the apron is lowered to prevent spillage during having.

The dumping operation consits of lowering the cutting edge to the desired height, above the fill, raising He cupron, and forcing the earth out. Scrapers are availa -ble with either cable or hydraulic control for operations
(5) Dragline

Draglines are used to excavate earin and load it into hauling units such as trucks, tractor pulled wagons eot.c or deposit on banks, darns etc.
powershovel up to capacity of $1.9 \mathrm{cu} . \mathrm{m}$ can be cons -erted into dragline, by replacing the boom of the should with a crane boom and substituting the dragline bucket for the shovel dipper.

Although shovel and dragline con be used on some project for the same job, in many projects drastimes would have advantages over shovel.

Advantages:-

* useful when caria is to be removed from a ditch or carnal or pit containing water, as trucks won't have to go into mud
* Draglines with long booms are helpful when earth is to be deposited on banks ar dams, eliminating need of hauling unit
* Draglines are excellent for
without shorting.

Disadvantage

Disadvantage of a dragline is lesser output as compared to a shovel of same capacity

Operation of a Dragline:-

The bucket is lowered in fully dumped position, releasing both the hoist and drag cable, till it rests on the ground with the teth digging into the ear the the hoist cable is slackened slightly and then the drag pull is applied. this action fill on the earing and the bucket takes a horizantal position. it is then hoisted. when the $r q$ dumping height is attained, the boom is swung to the position of dumping and the brag brake is released. This will dump the load off the bucket. The boom is then swung back to the digging position and the Same cycle of operation are repeated.

Applications:-

*. It is the most suitable machine for digging softer material and below it's track level.
*. It is very useful for excavating trenches when the sides are permitted to establish their angle of response without' shoring.

* It has long trenches
* It is mostly used in the excavation for canals and depositing on the embankment without hauling units
(6) Clamshells.

This machine is so named due to the resemblance of its bucket to a clam which is like a shell-fish a hinged double shell. The front end is essentially a crane boom with a specially designed buckets loosely attached at the end through cables as in a drag line.

The capacity of the clamshell becket is usually given in cubic meters. There are 3 methods to express capacity.

Water level capacity:- water level capacity is the capacit of the bucket if it was hung level and filled with water.

Plate line capacity:- plate line capacity indicates the capacity of bucket following a line along the top of the clams.
Heaped Capacity:- Heaped capacity is the capacity of bucket when it is filled to the maximum angle of responce for the given material.

For specially heaped capacity angle of reyponce is assumed as 45°

Operation:- The calmshell bucket is brought over the location where the material is to be dug. The bucket is lowered with the shells open till a good contact is made with the ground. Now the bucket shells are closed - in - through the closing line. As the two shell?
close in, the weight of the into the material, hereby filling it it is then hoisted and swung to the position of dumping and the contents are dumped. The boom is them swung back to the digging position and the same cycle of operations are repeated the operations ane performed by manipulating the cables Suitably.
Applications:-

* Clamshells are commenly used for handling loose mater -ials such as crushed stone, sand, gravel, codel, etc
* The main feature of catmshell is the vertical liftir of material from one location to another.
* Clamshells are mainly used for removing from cofferdarns, sewer manholes, well foundations e.t.c
(7) Cranes

A crane is a machine which is having a hoist with a longitudanal and cross movement. The hoist of a crane consits of wive rope and hook. The crane is used both for lifting and lowering materials, and to move them harizantally, cranes uses one or mare simple machines to create mech - nical advantage and thus move heavy loads, many factors are taken into considerations while selecting a crane. These factors include lifting capacity, trans use and application and the number of work cycles

Types of cranes:-

Cranes are of many type Some of them are given below.
a. overhead or Gantry cranes
b. Mobile cranes
c. Tower Cranes
d. Stationary cranes

Gantry cranes :-
These types of cranes due to its large service area, freedom from floor obstruction and Three-way-mobi -ty, are widely used in erection, foundry, steel plant! storage yards and different types of industrial works These type of cranes consists of two main parts
i.e the bridge and

The crab
The bridge consist. of two main gerders fixed at Their ends to the end carriage which are supported on tram wheels and capables of moving on gantry rails. The crab consits of the hoisting gear mounted on a frame. The frame itself is mounted on another set of wheels and capable of travelling a(ral) The main gerder.

Mobile cranes:
mobile crane is mounted on a carrier usually a truck which provides the mobility for this type of crone His crane has two parts namely.
(i) A carrier which is often reffered to as the lowed and
(ii) A lifting component which includes the boom also referee to as the upper.

These and mated botogether through a tumble which allows the upper to swing from side to side. modern hydraulic truck cranes are usually single engine machines, with the same engine powering the Under carriage and the crane. The upper is usually powerd via hydraulics run through the turhable from the pump mounted on the lower older hydraulic take truck cranes had 2 engines. One in the bower is used for the crass to travel on the road and second one, ran a hydraulic pump for The out riggers and Jacks. The second in the upper ram the upper through a hydraulic pump of its own. Generally, These cranes are able to travel on highways, eliminating the need for special equipment to transport the crane. when working on the Job site, outriggers are extended harizantally from the chassis then vertically to level and stabili re the crane while stationary and hoisting.

TOWER CRANES:
It is usually fixed to the ground on a concrete this crane often gives the best combination of height and lifting capacity and is used in the construction of tall bcieldings. The base of the crane is attached to a mast which gives the crane its height. further the mas is attached to the slewing unit that allows the cranes to rotate. On top of the slewing unit there core Three 3 main parts

Those are

1. The long harizastal Jib (working arm)
2. Shorter counter Jib
3. operator's cab.

Stationary cranes: These are also known as Derrick cranes. These consits of a mast, a boom and bull wheel on which the boom rotates about a verticided anis and guys or supporting members. these cranes are cither electrically operated, diesel operated or diesel-electrically operated.

A derrick crane can be classified in to 2 types.
Those ore.

1. Guy derrick type
2. stiff leg derrick type.

GRADERS:
Graders are multipurpose machines used for finish
-ing, shaping, bank sloping and ditching. They are also used for mixing, spreading, side casting, leveling and crowning, light stripping operations, general construction and dirt road maintenence. A grader's primary purpose is cutting and moving material with the mold board. These machines are restricted to making shallow cuts in medium - hard materials: They should not be used for heavy excavation. A gradar can move shallow amounts of material but cannot perform dozer-type work beacuse of the structural string Th and location of it's moldboard.

Graders are capable of progressively cutting? ditches to a depth of 3 ft and for working on slopes. at steep as $3: 1$ However, it is not advil able to ron d graders parallel with such step slopes beacuse they have a comparatively high center of gravity and the righ pressure at a critical point on the moldboard coned cause the machine to roll over.

The components of the grader that actually do The work are the mold board (blade) and the serape Scarifier. Graders may also be equipped with light weight rear-mounted rippers.

Mold board:-
The moldboard, commonly referred to as the blade, is The working member of the grader. A rotating circle carries the moldboard. Through intricate hydraulics The moldboard can be placed into many positions, either under the grader or to the side. it can be side-shifted harizantally for increased reach outside of the tires Moldboard Angle:-

The moldboard can be angled (positioned) at almost any angle to the lime of travel, parallel to the direction of travel, shifted to either side, or raised into vertical position.

Scarified :-
Material too hard to cut with the moldboard should be broken up with the scarified. A scarified is an attachment hung between the front axle and the moldboard. it is composed of a scarified log with removable teeth.

The teeth can be adjusted to cut to a depin of 12 in . token operating in hard material, it may be necessary to remove some of the teeth from the Scarified \log. A maximum of 5 teth may be removed from the \log.

Graders are often used to spread and mix dumped loads. Beacuse of their mechanical structui and operating charectristics, gradars can only be effer -ive spreading and mixing free-flowing materials. A general formula for figuring grader spreading and mix Production is

$$
\text { Production (bcy) per hr }=3.0 \times \mathrm{hp}
$$

where $h_{p}=$ Engine flywheel-brake horsepower of The grader and efficiency is assumed to be a 50 min working hour.
pro": A large grader is rated at 220 hp . What is its expect production, in bey when used for spread dumped from haul trucks?

Sand is free-ffowing material, Therefore it can be used to calculate the production.

$$
\text { production (bey) per } \begin{aligned}
h r & =3.0 \times 220 \\
& =660 \mathrm{bcy} / \mathrm{hr}
\end{aligned}
$$

TIME ESTIMATES:-
The following formula can be used to prepare estimates of the total time required to complete a grader operation.
UUNIT-V:

CONCRETING EQUIPMENT

CRUSHERS-
Crushers are Sometimes classified according to the strange of crushing that they accomplish, such as primary, secondary, and tertiary. A primary crusher receives The stone directly from the Ex carnation after blasting and produces the First reduction in stone. Size.

They are Three types of Crushers

* Jaw crushers
* gyratory Crushers
* Impact Crushers

Jaw (rushers:-
Machines operate by allowing stone to Flow into the space b / n two jaws. One of which is stationary While the other in Movable the space b / η the Jails diminishes as the stone travels down ward under the effect OF gravity and the motion of the Movable jaw. Until the Satire Ultimately passes through the Lower opening. The Movable jaw is Capable of Exerting a pressure sufficiently high to crush the hardest rock. Jaw crushers are Usually designed with the toggle as the weakest part. The toggle will break if the crusher

Encounters an uncrushable objet ar is subjected -to overload. this limits damage to the crasher.
Docile toggle:-
A double - toggle jon Crusher. The Blake type hos a Movable jor suspended from a shaft mounted On the Crusher fromm. The rotation of a second shaft, which is Eccentric and is located behind the movable Jaw. Tasisers and lowers the pitman, actuating t wo toggle, and These produce The Crushing action. As the pitman raises the two toggles, G high pressure is Exerted near The bottom of the Swing jaw that partially closes the Opening at the bottom of the two jacos. This operation is repeated as the Eccentric shaft is rotated. The jaw platecare geplaceble. The jaws may be smooth or in the event the Stone tends to breaks into slabs. Correngated jaws may be Used to reduce the slabbing.
Single toggled-
When the Eccontore shaft of tue single-toggle Crusher, as illustrated is rotated. it gives the movable jaw both G vertical and horiantal motion. This type of Crusher is used quite frequently in portable rockCrushing plants because of its compact size lighter Weight, and reasonably sturdy Construction.

Gyratory Chushers:-
Gyratories are the Most Efficient of all primary type crushers. A gyrating mantle mounted within deep bowl characterizes these crushers. they provides continuous crushing alton and are used for both primary and secondary crushing of hard, tough, abrasive rock.
True gyratory: -
A Sectim through a gyratory crusher. The Crusher Unit Consists of a heavy cast-iron or steel frame, with an Eccentric shaft and driving gears intro lower Tart of= the Unit. in the Upper part there is a Cone-Shaped crushing chamber, lined with hard-Steel or manganese-steel plates called the "Concaves". The crashing cuember includes a hard-steel crushing head mounted on a vertical steel Shaft. This shaft and head are suspended from the spider at the top of the frame that is so constructed that some Vertical adjustment of the shaft is possible.

The size of a gyratory crusher is the width of The receiving opening. measured bin the cancaves and th crusher head. The setting is the width of the bottom opening and may be the Open or closed dimension.

Normally the Capacity of a "true gyrator" crush en is based on an open - size setting.

The size selected may be dictated by of the rock from the blasting operation. or it mon inctaled by a desired Conpacity.

Impact Crushers:- Import Crusher fracture the feed Stone by The application of high-speed impact forces. Advantage is taken of the rebound b / n the individual stones and against the machine surfaces to fully Explot the intel impact Energy. The design of some impact crushers also Ufilizes shear and Compression. In addition to impact Gelien to fracture the stones. This is Gecomplished by forcing The stone bin the revolving and stalimary parts of the crusher. Speed of rotation is important to the effective Operation of These crushers as the Energy available for impact varies as the square of the rotational speed.
\rightarrow Single Rotor -
The single rotor - type impart crushers brealas the stone both by the impact-Guison of tue impellears striking the geed material and by the impart That result when the impeller - driven material Strikes against the aprons wimin the Crusher Unit. these Crushers produce a cubical product but are economical only for Low-Gbrasion feeds.

Docile rotor:-
These Units are similar or the single rotor cuodels and Gecomplish aggregate - Size rodectionor The Same mechanical mechanisms. They will produce some what higher proportion of fines.
\rightarrow Hammer Mills:-
The hammer mill, which is the most widely used import Crusher. Can be used for primary or Secondary crushing the basic parts of a unit include housing frame. a horizontal shaft Extending through the housing a number of arms and hammers attached to a housing a number of arms and hammers attached to a spool, which is mounted on the shaft: One or more manganese - Steel or other hard-steel breaker plates and a series of grate bars, whose Spacing can be adjusted to regulate the width of openings through which the crushed stone flows

* Selection of crushing equipment? -

In selecting crushing equipment. It is essential that certain information be known prior to raking The selection. The information needed includes, but is not necessarily limited to, these items.

1. The kind of stone to be crushed.
2. The required capacity of the plant - needed.

Output production
3. The maximum size of the Feed stones (Conceming The size range of tue geed is a help dull)
4. The method of Feeding Tue (rushers.
5. The specified size range of the product.

* Screening of Aggregate:-

The Screening process is based upon the simple premise that particle size smaller than the Screen cloth opening size will pass Through the Screen and That oversized particles will be retained

Screen opening can be described by either of two terms.

1. mesh
2. Clear Opening
3. Mesh:-

The mesh rider to The number of openings per linear inch to count the number of Openings to an inch. Measure From the Center or the screen wire to a point 1-in distance.
2. Clear Opening:-

Clear Opening "or' "space" is a term that refers to the distance b/n The inside edges of two parallel wires.

3
hypes OF Screenings? -
The Screenings are Following Three types

1. Revolving screens
2. Vibrating screens
3. Horizontal Screens
4. Revolving screenswuvari - Revolving screens have several advantages Over other types of Screens, especially when they are used to wash and screen sand and gravel the Operating action is slow and simple, and the maintenones and repairs costs are Low. if the aggregates to be washed contains silt and clay. a scrubber can be installed near the entrance of a screensto agitate the Material in Water, ft the same time streams of Water can be spraye. on the aggregate as it Moves through the Screen.
5. Vibrating screens:-

Vibrating screens Consist of one or more layer or "decks" of Open mesh wire cloth maul one above the other in a rectangular metal box. These are The most widely used aggregate production Screensithe vibration is Obtained by means of an eccentric Shalt. a counter weight shaft, or electromagnets attached
to the from or to the serins

- A unit may be horizontal or inclined ligh Slope (20° ores) from the receiving to the harge end. the vibroition, 850 to 1,250 strokes per causes the aggrege to flow over the Surface of the Screen. Normally, large amplitude and slower speed one necessary for large sere Openings, and the Opposite is necessary for small screen Openings.

3. Horizontal Screens $:$ -

Horizontal Screens, the throw of tue vibrations Must move the material both forced and UP-ward. FOr That reason. its line of action of 45° relative tote horizontal.

Most OF the particles that are smaller than the Openings ing screen at will drop through the screen while The oversize particles will flow off the screen at the discharge end. For a rualitple - deck unit. the size OF The Openings will be progressively smaller for Each lower deck.

A screen will not pass Gill ivaterial whose Size are equal to or less than the dimensions of the openings in the screen. Some of this material may be retained on and Carried over the discharge find of a screen. The efficiency of a screen can be definetas The ratio of the amount of Makrial passing through a
$=\frac{2}{5}$. Mixers of all types and sizes are eliluer 1.reegali pliers or power mixers. Freefoll mixers termed "gravit mixers". Mix Concrete by lifting the ingredients wit The aid of fixed blades inside a rotefing drum and then dropping tue vaterions by over. Coming tue friction bin the mixture and blades.
power mixture blend Concrete by rapid rotary Motion of paddles inside the mixing drum. The size of a mixer is measured by volume manufactures commonly Categorize mixers by normal volume or from size rather than by tue "total volume" or the "dry chary the nominal volume is the maximum batch Capacity the output $0^{1}=$ Mixer.
mixer output is measured in "Cf or ch" per hour depending on mixer size and is determined by tue mixer's Cycle time. mixer cycle Composed are

1. loading time
2. Mixing time
3. Discharging time

The Estimation of mixer Output for Selle-loading dreefall mixers is Commonly based on 40 cycle lar or 1.5 min of total cycle time for mixer of Up to 15 cf g 30 cycle $/ \mathrm{hr}$. 2 min of total cycle time for longe mixer. CF leans Cubic feet
By means Cubic yard.

Screen divided by tue total amount that is surat 6 pass Through, whim the ratio Expressed as a percent. The Efficiency is obtained wit a single-deck screening use amounting to 90 to 95%. As additional are installed.I Efficiencies of These decks win Ease, being above 85% for The Second deck and 45% for The third deck.

* Concrete Mixers:-

There are two types of Concretemixing operation is Use:

1. transit mixed
2. Central Mixed

Today, unless The projeut is in a remote location or is relatively large. The Concrete is bat che in a Central batch plant and transported to tue job site in transit - mix trucks, often referred to as ready mixed Concrete trucks, or truck mixes.

When discussing Concrete mixing and mixers, batch mixing should be distinguished From contionous or "Flow-type" mixing. Wheitaer on tue job site or at Tue ready - rimed plant. Concrete is Usually mixed by batches Only dor specific applications is mixing continous, name - ely, with continuous flow of Concrete ingradeint changed into one End of tue Mixer and Contionas Flow of concrete discharge at tue other End.

concrete mixers.

1. Free fall, mixer
2. Tilting mixer
3. Reversible mixer
4. power mixer
5. pan mixer
6. Trough mixer
7. Free Fall Mixers-

The drum of a free Fall mixer Can be filled and emptied by changing its direction OI $=$ rotation. Opening it, or tipping it Up. Rotation speed must Carefully follow machine - Specific instratio and should not be too fast so that the free fall of tue mixture is not interrupted by Tue centrifugal force. Free Fall mixing Suits concretes that are not too stiff. Usually win G 2-in, Minimum slump, as Commonly Used on Constration sites, truck mixers., discussed later, also use free fall mixing. Two cormmontynes of free fall mixers are tilling mixers and reversible Mixers.
2. Tilting mixers -

These are Commonly trailer-meented or other wise portable coal to mid size mixers. Used Bituer as main concrete mixing equipment

Sites or as ancillary Equipment on sites served si ready -mixed concrete plant. The drum has two a one around which the drum rotates and another serves to Change from loading and mixing positim (dromopenin. UP) to discharge position (drum opening down). this position Change is done Manually by a dump wheel (or handle, in The smaller mixers) while thrum rotation is Electric. gasoline, or diesel powered.
common outputs are in the range of 2 tolocy/hr. Large Mixers. in the range of 5 to 15 cy . are used on centralMixed concrete plants.
3. Reversible Mixers:-

The drum on a Reversible Mixers has one horizontal axis around which it rotates. There are two openings. One at each end of the drum: One for feeding the ingredients, the other for discharging the Mixtures In mixing position the drum rotates in the one direction. While for discharge rotation is reversed. Commonly Self-loading reversible mixtures ore midsize to large - Size units manned on n two - or Four-wheel tailed for transportation between sites.
4. Power Mixers:-
power Mixers, also termed puddle M Mixers, forced Mixers, or Compulsory mixers, Mix concrete.
\& rapid rotary motion of paddles (ar mixers heads) moving in centric or acentric courses inside the ing from. TO prevent the concrete from sticking tue drum side and bottom. Some of the paddles must Constantly clean tue Concrete OFF the side and bottom and redirect it to thurs Centre. The paddles are spring - connected to tue drum to prevent Them from breaking undertue intensive miring Getion. Tue intensive Mixing also Causes Excessive wear to The chum's inner surface. Which is not present in dreedal mixers. to wimstand this wear, the inside of the drum is lined with small, easily replace able plants that are produced of specialized abrasion - resistant Material.

The mixing output of a power mixer is about 50 to 100% higher Tan that of a Same - Size free- fall Miner.
5. Pan Mixers ${ }_{c}$ -

The paddles of a pan mixer are Connected to a vertical shaft inside tue pan-shaped drum. In turbonixers The Vertical shaft is fixed and located in the centre of the from.

1. Bothe the from and paddles rotate in counter directions.
2. The drum is stationary while all the pard les rotate In tue Same direction.
3. The drum is stationary but paddles rooted Counted direction.
4. Trough Mixers:-

These are power Mixer That have a Through shaped drum (resembling a horizontally placed barrel cut by hesif). The single - shaft mixer has a horizont Shaft onto which the paddles are connected in a spiral like arrangement: in same models wave-shaped mixing aras replace tue paddle Tue Combination of radial (rotary and axial (horizontal) movements obtrined produces a threedimmsional criculation path that purtaer increases mreing intensity and Therefore results in shortened mixing times.
Placing Concrete i-

1. Buckets:- Jormally, properly decigned bottom dump Bucket enable concrete placement at the lowest praticalslump Care should be exercised to prevent the concrete from segregation as a result of discharging from too high above tue surface or allowing the fresh concrete to fall post obsentruition (Such as tue forms Tuemseates in Tue case of Column) gates should be designed so that they can be opened and closed at any time during the discharge of the concrete.
mull oR Motor propelled Buggies:-

Hand buggies and Wheel barrows are usually Capable of Carrying from 4 to 9 cf concrete and this are suitable on many projects, Either as the sole or main conte placing equipment for small or as a Complementary leans of projects Utilizing canes or pumps as the Major Concrete-placir equipment When considering tue use of buggies and wheel barrows, Tue Expense of building ramps, tramways, and simile. setup's should be taken into account, as buggies and wheal barrows can only operate on smooth and rigid surfaces Hon n buggies are Safe than wheel barrows they have two wheels rater than one.
3. Chutes and Drop pipes:-

Chutes are often Used to transfer concrete from a higher elevation to a lower elevation tace should hove a pour bottom. and the slope should be steep Enough for tue concert to plow Continuously wimant segregation. Truck mixers ar normally equipped with built in Swing Sand often extent ta chutes. These chutes are hydraulically operated for direct placing of the mix when tue concereting location is wimp Chutes reach. Drop pipes are used to transfer The concrete Vertically down.
4. Belt conveyors-

Belt Conveyors can be classified into types they ares -

1. portable or SelF - Contained Conveyors.
2. Feeders or Series Conveyors.
3. Side-discharge or spreader Conveyors.

All types provide for the rapid movements of Fresh concrete but must have proper belt size and speed to achieve The desired rate of transportation. particular attention must be given to points where the concrete leaves one conveyor and either continues on the anotuer conveyor or is discharged as segregation can occur at these points. The optinnum Concrete slump For Conveyed Concrete is From 21/2 to 3 . A belt conveyor mounted on a track carrier being used to place low-slump was roller compacted concrete.
5. Concrete pumps:-
pump require a steady supply OF pumpable concrete to be effective today There are Three types of pumps being manufactured.

1. piston pumps.
2. preamatic pumps
3. squeeze pressure pumps

Most piston pumps currently contain two pistons, with one retracting during the forward stroke

Que other to give a more continuous flow of canrete. The pneumatic pumps normally use a reblend discharge box at tue discharge end to bleed off air and to prevent Segregation and spraying.
pump with a pipeline:-
In this configuration, also termed a line pump. The pipeline is a separate system that must be assembled and connected to tue pump before pumping operations begin. the pipe lime is laid from tue location of the pump to rue Concrete casting area.

In terms of pump mobility. Three tyres can be distingui shed.

1. Stationary pump-

The pump is mounted on a steel frame and stationed in a fixed location throughout construction. This Configuration is suitable for limitedarea sites with large and frequent concreting operations.
2. Frailer pump:-

The pump is mounted on a one-or-two are trailer to enable easy on-site relocation as well as Movement bin sites. it suitable mainly for spread out Sites. it is sur one pump cam also serve several adjacent site as it can be moved b/n Them according to concreting
Schedule. Schedule.
3. Truck pump'-

Jot to be confused with truk-moũ pump and bottom. Combination this quick setup pump is moved b / n sites and operated on a Standard truck Chassis.

* CONSOLIDATING AND FINISHING i-

Consolidating concrete: - Concrete, a heterogeneous mixture of Water and solid particles in a stiff condition, will normally contain a large quantity of voids when placed The purpose of Consolidation is to remove these Entrapped air voids $\&$ to ensure complete filing of the forme, The importance of proper consolidation cannot be overemphasized. as the entrapped air can render the concrete totally Unsuticforctory Entrapped air can be reduced in two Ways - Use more Water or Consolidate the concrete.

Consolidation is normally achieved tarongh tue Use of Mechanical vibrators, only in case a extremely Small/thin elements and particularly wit concrete mixture is Consolidation by hand tools, such as a plastic - head hamper, allowed, properly vibrated concrete is higherquality concrete, mainly in terms of strengin butalso in terms of reinforcement protection, resistance to aggressive agents, and overall appearance. vibrators and

Ene vibunt action are characterized and distinguished by the wing properties.

1 Frequency: The number of vibrations per unit time (commonly minutes).
2. Amplitude: - The Magnitude of the motion in Each Vibration.
3. Orientation:- There are vibrators wimp random motion at all directions. While others have Unidirectional motion only.

Surface vibrators exert Their effects at the top surface of the conrete and consolitate The concrete from the top down. They are used mainly is slab construction. and Tarere are four general types:

They are e - I. The vibrating screond.
2. The pan-type vibration.
3. The plate-or grid vibuntery tamper.
4. The vibuntary rolling screened.

These surface vihraters operate in tace range from 3000 to 6000 vibration/ min.

Finishing and Curing Conerte :-
The finishing process provides the desired find Concrete surface. Unformed surfaces may require only "Screeding" to proper Contour and elevation or a broom Floated, or troweled finish may be specified.

Further more, Each step in tue finishing operation, from first "Floating" to the Final Floating or troweling should be delayed as long as possible.
this duration is limited by the necessity to finish The concrete to the desired grade and surface smoothness While it can still be worked (still in a plastic state).
Floating has Three purposes:-

1. To embed aggregate particles just benet the Surface.
2. To remove slight imperfections, high spots, and foo spots; and.
3. To comport the concrete at tace surface in preparation for other finishing Operations.
